

Ge	Genetic diversity in Island Species					
	Richard Frankham (1997) <i>He</i>	redity 78:311-327.				
Low levels of	genetic diversity					
~29% less th	nan mainland species					
Birds, Mammals,	21% less 35% less					
<u>Even less</u> ge	netic diversity in island	d endemics				
Endemic bire Endemic ma	ds, 63% less diversity immals, 80% less dive	than mainland sp ersity than mainlar	ecies nd species			

Genetic diversity in Island Species

1. Longer history of small (restricted) population size in island endemics

2. Low genetic diversity is partly responsible for high extinction risk of island species

So, island species tend to be genetically impoverished (relative to mainland species) because they have evolved on islands

Evolution in LARGE populations

All populations need to evolve to survive.

Populations (species) need genetic diversity to adapt to changing environments.

Evolution in LARGE populations

All populations need to evolve to survive.

Populations (species) need genetic diversity to adapt to changing environments.

Large populations contain high levels of genetic diversity (mutation, Balancing selection).

Evolution in LARGE populations

All populations need to evolve to survive.

Populations (species) need genetic diversity to adapt to changing environments.

Large populations contain high levels of genetic diversity (mutation, Balancing selection).

Evolutionary processes such as <u>natural selection</u> ensure that genetic diversity is RETAINED in LARGE populations.

Immigration (uncommon in island populations?)

(a very slow process)

When populations become small (rare), they loose genetic diversity.

So, how does this happen?

and

What's all the fuss about?!

<u>Genetic Drift</u> in small populations

Genetic drift in small populations

Genetic drift is the random loss of genetic diversity in small populations, genetic drift dominates over natural selection.

Evolution in small populations

The dominating evolutionary processes, in small populations (in order of importance):

- 1. Chance (genetic drift)
- 2. Inbreeding
- 3. Mutation (accumulation of...)
- 4. Natural Selection

Implications of Genetic Drift

- (a) large random changes in the genetic make-up of the population
- (b) Loss of genetic diversity
- (c) Fragmented populations may end up with very different genes simply by chance

- What is your own genotype?
- How many of you are heterozygous?
- How many of you are homozygous?
- What are the frequencies of each of the alleles amongst all of you?

Frequency of Time	of each of the l	<u>3 alleles in 1</u>	your parent: 2	s generation
Frequency of Time Blue	of each of the l 0 20%	<u>5 alleles in ;</u> 1	your parent: 2	s generation
Frequency of Time Blue	of each of the f <u>0</u> 20% 4%	<u>6 alleles in ;</u> 1	your parent: 2	s generation
Frequency of Time Blue Yellow Red	of each of the I 0 20% 4% 20%	<u>3 alleles in ;</u> 1	<u>your parent:</u>	s generation
Frequency of Time Blue Yellow Red Orange	of each of the <u>0</u> 20% 4% 20% 20%	<u>6 alleles in ;</u> 1	<u>your parent:</u>	s generation
Frequency of Time Blue Yellow Red Orange Green	of each of the l 20% 4% 20% 20% 16%	<u>6 alleles in ;</u> 1	your parent: 2	s generation

So, genetic drift changes the frequency of different alleles in a population

(rare alleles are lost by not being transmitted into the next generation)

What other ways can populations loose genetic diversity?

Inbreeding

Is there any experimental evidence that inbreeding is linked to extinction of populations?
Image: A structure of the structu

7

<u>There is a close relationship</u> between inbreeding & loss of genetic diversity						
Increase in inbreeding _ Loss of genetic diversity per generation per generation						
<u>1</u> 2N	population size	<u>1</u> 2 <i>N</i>				
1 2N _e	effective population size	$\frac{1}{2N_{e}}$				

What are the *genetic consequences* of inbreeding ?

Inbreeding CHANGES the proportion of genotypes in a population from one generation to the next

Inbreeding DOES NOT change the allele frequencies

BUT, in small populations, allele frequencies will change due to <u>genetic drift</u>

When <i>F</i> increases by 25% what happens to fitness characters?					
IQ Height (@ 10yrs)	↓ 11% ↓ 4%				
Survival Reproductive survival Litter size					
Litter size	- 10%				
Hatchability	<mark></mark> 89%				
	increases by 25% s to fitness charac IQ Height (@ 10yrs) Survival Reproductive survival Litter size Litter size Hatchability				

• If inbreeding is unavoidable in small populations, aren't they simply a lost cause?

Effective population size (N_e) HNot all individuals in a population
are genetically 'effective'StOn average, N_e comprises only 10%
of the total census population sizeStWHY?EdUnequal number of males and femalesEdUnequal size of family groupsEdUnequal numbers of offspring per generationEd

ISLA - St. Lucia 2005

